

# Module Description, available in: EN

# Laser and laser applications

#### **General Information**

**Number of ECTS Credits** 

3

Module code

TSM\_Laser

Valid for academic year

2021-22

Last modification

2019-10-11

Coordinator of the module

Ronald Holtz (FHNW, ronald.holtz@fhnw.ch)

Explanations regarding the language definitions for each location:

- Instruction is given in the language defined below for each location/each time the module is held.
- Documentation is available in the languages defined below. Where documents are in several languages, the percentage distribution is shown (100% = all the documentation).
- The examination is available 100% in the languages shown for each location/each time it is held.

|               | Lausanne |  |  | Lugano | Zurich          |  |  |
|---------------|----------|--|--|--------|-----------------|--|--|
| Instruction   |          |  |  |        | <b>X</b> E 100% |  |  |
| Documentation |          |  |  |        | <b>X</b> E 100% |  |  |
| Examination   |          |  |  |        | <b>X</b> E 100% |  |  |

# **Module Category**

TSM Technical scientific module

## Lessons

2 lecture periods and 1 tutorial period per week

# **Entry level competences**

Prerequisites, previous knowledge

Optics: Basics of wave and geometrical optics; without optics basics during bachelor studies, the EVA "Fundamentals of light" should be visited before visiting further TSM modules.

Physics: Basics for engineers (bachelor niveau)

# Brief course description of module objectives and content

TSM module "Laser and Laser applications" provides a broad overview about the fascinating field of state-of-the-art Laser technology and its applications in industry, R&D, medicine and communication. The modul provides a comprehensive insight into the Laser and applications market, Laser types and devices, Beam deliveries, Laser machines, Physics of interaction between laser and material, and real industrial application examples

presented by experts with industrial background. Module objective is to increase and enhance the technological competences on laser generation, control, and laser-material interaction.physical/technological limits and competing technology.

#### Aims, content, methods

#### Learning objectives and acquired competencies

After successfully completing this course the student:

- knows the concepts of the most important laser types with their respective advantages and disadvantages and will be informed about future trends.
- will be skilled to decide between Laser-based technology or other manufacturing technology based on knowledge in technology, efficiency, economical, and ecological reasons
- · knows industrial relevant beam guiding and delivery systems and technologies
- will be skilled to make decision on suitable laser source and beam delivery depending on application process.
- thoroughly understands important laser applications and can design the most relevant features of the systems required for them
- · knows the most relevant physical effects which happen during the interaction between laser and material
- will be skilled to determine processing strategy, basic parameters and supporting technology
- · knows basics methods of beam diagnostics, process monitoring, and industry 4.0 technology

#### Contents of module with emphasis on teaching content

#### Laser [7 weeks]

- 1. Basics [2 wk]
- Repetition of basics, Resonators, Laser modes, etc.
- 2. Technical realization of Lasers [3 wk]
  - Design concepts of significant laser sources, Pulse generation, Wavelength conversion,
- 3. Beam Delivery and Optics [1 wk]
- hard optics, fibers, working head concepts, beam forming, Scanners, fast and ultra-fast optics etc.
- 4. Laser Safety and health protection [1 wk]

# Laser Applications [7 weeks]

- 1. Industrial Laser Applications [4 wk]Market description, Applications (Welding, Cutting, Drilling, Structuring, Hardening, Marking, Additive Manufacturing etc.), Laser materal interaction, parameters, process properties and limits, laser machine concepts
- Lasers in Medicine, Measuring Technology, Communication and Science [2 wk] Interferometry, Spectroscopy, Surgery, Ophthalmology, Displays and Communication, Microscopy
- 3. Beam and process diagnostics [1 wk]

  Methods of beam analytics and validations, Methods of process monitoring and control, lasers and industry 4.0

#### Teaching and learning methods

- · Lectures and self-study
- · Practical and theoretical exercises

# Literature

- 1) William Silfvast: Laser fundamantals
- 2) Rainer Dohlus: Lasertechnik
- 3) Helmut Hügel, Thomas Graf: Laser in der Fertigung
- 4) Saleh, Teich: Photonics
- 5) Fritz Kneubühl: Laser

## **Assessment**

# **Certification requirements**

Module does not use certification requirements

# Basic principle for exams

# As a rule, all the standard final exams for modules and also all resit exams are to be in written form

# Standard final exam for a module and written resit exam

Kind of exam

written

**Duration of exam** 

120 minutes

Permissible aids

Aids permitted as specified below:

Permissible electronic aids

• calculator

Other permissible aids

• personal formulary 4 A4 pages

# Special case: Resit exam as oral exam

Kind of exam

oral

**Duration of exam** 

30 minutes

Permissible aids

Aids permitted as specified below:

Permissible electronic aids

specified by the lecturers

Other permissible aids

specified by the lecturers