

Module Description, available in: EN

Advanced robotics

General Information

Number of ECTS Credits

3

Module code TSM_AdvRobot

Valid for academic year

2024-25

Last modification

2022-10-21

Coordinator of the module

Gabriel Gruener (BFH, gabriel.gruener@bfh.ch)

Explanations regarding the language definitions for each location:

- Instruction is given in the language defined below for each location/each time the module is held.
- Documentation is available in the languages defined below. Where documents are in several languages, the percentage distribution is shown (100% = all the documentation).
- The examination is available 100% in the languages shown for each location/each time it is held.

	Lausanne			Lugano	Zurich		
Instruction					X E 100%		
Documentation					X E 100%		
Examination					X E 100%		

Module Category

TSM Technical scientific module

Lessons

2 lecture periods and 1 tutorial period per week

Entry level competences

Prerequisites, previous knowledge

- Linear algebra and differential equations
- Feedback control systems
- Actuation and sensory systems
- Basic programming skills
- Basic robotics knowhow (recommended)

Brief course description of module objectives and content

In this module, basic and advanced robotics knowhow is developed necessary for leading-edge, innovative industrial and service applications with robot manipulators.

Aims, content, methods

Learning objectives and competencies to be acquired

At the end of this course, the student will have earned the knowledge necessary to build a complete robot system as well as acquired the skills to develop industrial and service applications based on commercial robots beyond their standard interfaces.

Module content with weighting of different components

• Robot Kinematics

- · Homogeneous transformation matrices and quaternions
- · Forward, inverse and instantaneous kinematics of serial and parallel robots
- Kinematic redundancies and subspaces
- Trajectory generation
- Robot Dynamics
 - Motion state: speed, acceleration and jerk
 - Dynamic models of multibody systems
 - Modeling friction, gear backlash, efficiency and stiffness
 - Robot dynamic equations for simulation and control
- Robot Control
 - Linear and nonlinear control
 - Trajectory, force and hybrid control
 - · Adaptive, model-based, vision-based control
 - Haptic control
- Robot Design
 - Task requirements and kinematic configuration
 - · Joint types, actuators, sensors, communication busses and architectures
 - Control systems and real-time restrictions
- Applications
 - Industrial and service use cases
 - Collaborative and interactive robots
 - Research topics
 - · Safety and ethics in robotics

Teaching and learning methods

- · Ex-cathedra teaching
- Case studies
- Exercises
- The theory learned in class is applied in real robotic applications

Literature

- B. Siciliano, O. Khatib eds., "Springer Handbook of Robotics", Springer-Verlag, Berlin, 2016.
- J. J. Craig, "Introduction to Robotics: Mechanics and Control", 3rd edition, Pearson Prentice Hall, USA, 2005.
- P. Corke, "Robotics and Control", Springer-Verlag, Berlin, 2022.

Assessment

Certification requirements

Module uses certification requirements

Certification requirements for final examinations (conditions for attestation) Submission of the given exercises

Basic principle for exams

As a rule, all standard final exams are conducted in written form. For resit exams, lecturers will communicate the exam format (written/oral) together with the exam schedule.

Standard final exam for a module and written resit exam

Kind of exam Written exam Duration of exam 120 minutes Permissible aids Aids permitted as specified below: Permissible electronic aids All electronic aids permitted Other permissible aids Open book

Special case: Resit exam as oral exam Kind of exam Oral exam Duration of exam 30 minutes Permissible aids Aids permitted as specified below: Permissible electronic aids All electronic aids permitted Other permissible aids Open book