

Module Description, available in: EN

Photovoltaic & storage

General Information

Number of ECTS Credits

3

Module code

TSM_PhotoStor

Valid for academic year

2026-27

Last modification

2025-10-10

Coordinator of the module

Hartmut Nussbaumer (ZHAW, nusu@zhaw.ch)

Explanations regarding the language definitions for each location:

- Instruction is given in the language specified for each location and module execution.
- Documentation is available in the language(s) listed for each location and module execution. If the documentation is in multiple languages, the percentage distributed is indicated (100% = all documentation provided).
- The examination, including both questions and answers, is provided entirely (100%) in the language(s) specified for each location and module execution. The exams are on-site.

	Lausanne			Lugano	Zurich		
Instruction					X E 100%		
Documentation					X E 100%		
Examination					X E 100%		

Module Category

TSM Technical scientific module

Lessons

2 lecture periods and 1 tutorial period per week

Entry level competences**Prerequisites, previous knowledge**

Basics in Physics, Electronics, Basic understanding of I(V) curves

Brief course description of module objectives and content

The objective of the course is to gain the competence to understand the current scientific topics in the field of photovoltaic and battery research and to have the opportunity to familiarise oneself with a special area of research. After a short compact course on the basics of photovoltaics, the current module technology, production of modules and topics from systems engineering will be covered. Another focus of the course is battery technology.

Aims, content, methods

Learning objectives and competencies to be acquired

The aim of the course is to gain an in-depth understanding of photovoltaic and battery technology. Students gain a broad knowledge of the subject area and are able to apply the knowledge they have acquired to assess specific practical issues. After completing the course, students should be able to understand the content of scientific conferences in the field of photovoltaics and battery technology and provide new impulses for the further development of the technology themselves.

Module content with weighting of different components

Chapter 1: Basic photovoltaics 3x3 lectures

Fundamentals of photovoltaic systems: Solar resources, irradiance vs. irradiation, energy yield estimation, components of PV systems, types of PV systems, operating principles of PV inverters, PV market international and in Switzerland, LCOE, energy pay back time

Semiconductor basics, p/n junction, working principle of solar cells, absorption edge, I/V curve, efficiency limit, recombination losses

Chapter 2: Solar modules 1x3 lectures

Production of silicon solar modules: metallurgical silicon, polysilicon, ingot, wafer, solar cell, module,

Crystalline silicon solar modules 1: Module construction, encapsulants, solar glass, wafer size, half cells, PERC, TOPCon, HJ, IBC, perovskite silicon tandem

Chapter 3: Solar modules in operation 2x3 lectures

Crystalline silicon solar modules 2: Electrical characteristics. Study of IV curve, partly shading, shading tolerant modules

Crystalline silicon solar modules 3: Reliability, lifetime degradation rates, types (LID, LeTID, PID, UV), Accelerated aging

Chapter 4: System technology 2x3 lectures

PV inverters, hybrid inverter, MPP tracking strategies, power optimisers, inverter behaviour in partial shading conditions

Energy yield and loss calculation of PV systems

Chapter 5: Battery technologies 3x3 lectures

Energy Storage introduction, Battery history, Electrochemistry basics and Li ion battery materials

Battery Performance, System design and lifetime mechanisms

Battery Safety, End of life options, Market overview and Application example

Chapter 6: PV integration 3x3 lectures

PV system design: Matching modules, inverters and power optimisers

Choice of system topologies for specific situations

PV in the power system: Grid integration strategies

Teaching and learning methods

- Lecture, discussion, exercises, case studies
- Exercises using basic mathematics and several public software tools

Literature

Assessment

Additional performance assessment during the semester

The module does not contain an additional performance assessment during the semester

Basic principle for exams

As a rule, all standard final exams are conducted in written form. For resit exams, lecturers will communicate the exam format (written/oral) together with the exam schedule.

Standard final exam for a module and written resit exam

Kind of exam

Written exam

Duration of exam

120 minutes

Permissible aids

No aids permitted

Exception: In case of an electronic Moodle exam, adjustments to the permissible aids may occur. Lecturers will announce the final permissible aids prior to the exam session.

Special case: Resit exam as oral exam

Kind of exam

Oral exam

Duration of exam

30 minutes

Permissible aids

No aids permitted