M S — MASTER OF SCIENCE
| —— IN ENGINEERING

Module Description, available in: EN

Advanced Programming Paradigms

General Information
Number of ECTS Credits

3

Module code
TSM_AdvPrPa

Valid for academic year
2026-27

Last modification
2024-10-08

Coordinator of the module
Daniel Kroni (FHNW, daniel.kroeni@fhnw.ch)

Explanations regarding the language definitions for each location:

¢ Instruction is given in the language specified for each location and module execution.

e Documentation is available in the language(s) listed for each location and module execution. If the documentation is in multiple languages, the
percentage distributed is indicated (100% = all documentation provided).
¢ The examination, including both questions and answers, is provided entirely (100%) in the language(s) specified for each location and module

execution. The exams are on-site.

Lausanne Lugano Zurich
Instruction X E 100%
Documentation X E 100%
Examination X E 100%

Module Category
TSM Technical scientific module

Lessons

2 lecture periods and 1 tutorial period per week

Entry level competences
Prerequisites, previous knowledge

All participants should be able to program in the functional and object-oriented styles to the degree that can be expected after attending an

introductory-level undergraduate course on these topics.

Participants without prior experience in functional programming are required to work through the chapters 1 through 8 in the book "Programming in

Haskell" (second edition) by Graham Hutton before starting the course.

TSM_AdvPrPa-2026-27.pdf / 2026-01-15

Page 1


https://www.msengineering.ch

Brief course description of module objectives and content

Although widespread, the currently mainstream imperative, object-oriented programming paradigm, with testing as its main method of quality
assurance, has its limitations. Even though it allows novices to write programs relatively quickly and without much formal training, such programs tend
to become complicated as soon as they need to do something non-trivial. This makes them increasingly hard to write and reason about, making
assurance methods that give better guarantees than software testing intractable. Similarly, even though it is possible to write software tests relatively
quickly and without much formal training, such tests are only able to show the presence of faults, but never their absence.

Few are aware that there exist a number of alternatives to imperative, object-oriented programming and testing. This course will start with a broad
overview of these alternatives, and then focus on one of them, functional programming, and the use of formal methods to specify and prove the
correctness of functional programs.

Functional programming is an approach to programming where simplicity, clarity, and elegance are the key goals. It is the application of formal
mathematical and programming-language-based techniques for the construction and verification of computer programs. Although it has a long history,
it has recently received attention due to its potential for writing elegant, correct and efficient programs that are easier to write, compose, and maintain,
once one is familiar with its underlying concepts. Its simplicity also allows reasoning about the correctness of functional programs using techniques
taught in high-school mathematics. These techniques can not only be used to state and prove functional correctness of smaller programs on paper,
but also large systems using automated proof assistants. Such automated proof assistants (e.g. Agda, Isabelle/HOL, Idris, Lean and Coq) are
themselves applications and further developments of functional programming.

In the final segment of the course, we broaden our focus to explore sophisticated type systems in imperative, object-oriented and functional
programming languages. These advanced type systems serve as effective tools for program verification, and have proven effective for identifying and
eliminating critical bugs.

Aims, content, methods
Learning objectives and competencies to be acquired
All participants are able to explain and apply formal programming-language-based techniques for the construction and verification of computer

programs. Special emphasis will be made on techniques that surpass some of the limitations of mainstream programming in the imperative object-
oriented programming style, and on alternatives to mainstream testing-based software assurance methods.

All participants should be able to:
¢ enumerate and explain a number of different programming paradigms.
e construct programs in the functional style.
» verify the correctness of functional programs using formal proof.
¢ apply advanced type systems to make imperative, object-oriented and functional programs more secure.

Module content with weighting of different components

The following is a rough overview of the content of the course and is subject to change:
e Overview (1 week)
o A broad overview of different programming paradigms.

¢ Functional Programming (4 weeks)
o Fast paced revision of functional programming prerequisites and Haskell.
o Types for correctness, Input/Output in a pure language.
o Functional design patterns: Functor, Applicative and Monad with parsing as an example application.
o Application: Interpreters for a small imperative and functional programming language.

¢ Proving Programs Correct (5 weeks)
o Equational reasoning
o Structural induction
o Automated theorem proving
o Dependent types

e Advanced Type Systems (4 weeks)
o Subtyping with generic types (co- and contravariance)
o Subtyping lattices
o Ownership typing
o Effect systems

Teaching and learning methods
Interactive lectures explaining main concepts, interspersed with programming exercises and reading assignments.

Literature
You are required to have a copy of the following book during the course:

TSM_AdvPrPa-2026-27.pdf / 2026-01-15 Page 2



e Graham Hutton, Programming in Haskell, Second Edition, Cambridge, 2016.

Further material will be provided during the course as required.

Assessment
Additional performance assessment during the semester

The module does not contain an additional performance assessment during the semester

Basic principle for exams
As arule, all standard final exams are conducted in written form. For resit exams, lecturers will communicate the exam format (written/oral)

together with the exam schedule.

Standard final exam for a module and written resit exam
Kind of exam

Written exam

Duration of exam

120 minutes

Permissible aids

Aids permitted as specified below:

Permissible electronic aids
None
Other permissible aids

A summary on at most 2 pages DIN A4 (= 1 sheet DIN A4, written by hand or electronically and printed out). This summary will be collected together
with the exam.

Exception: In case of an electronic Moodle exam, adjustments to the permissible aids may occur. Lecturers will announce the final

permissible aids prior to the exam session.

Special case: Resit exam as oral exam
Kind of exam

Oral exam

Duration of exam

30 minutes

Permissible aids

No aids permitted

TSM_AdvPrPa-2026-27.pdf / 2026-01-15 Page 3


http://www.tcpdf.org

	TSM_AdvPrPa: Advanced Programming Paradigms (EN)
	General Information
	Entry level competences
	Brief course description of module objectives and content
	Aims, content, methods
	Assessment


