M S — MASTER OF SCIENCE
| —— IN ENGINEERING

Module Description, available in: EN

Theoretical Computer Science

General Information
Number of ECTS Credits

3

Module code
FTP_TheoComp

Valid for academic year
2026-27

Last modification
2023-09-26

Coordinator of the module
Olivier Biberstein (BFH, olivier.biberstein@bfh.ch)

Explanations regarding the language definitions for each location:

¢ Instruction is given in the language specified for each location and module execution.

e Documentation is available in the language(s) listed for each location and module execution. If the documentation is in multiple languages, the
percentage distributed is indicated (100% = all documentation provided).
¢ The examination, including both questions and answers, is provided entirely (100%) in the language(s) specified for each location and module

execution. The exams are on-site.

Lausanne Lugano Zurich
Instruction X E 100%
Documentation X E 100%
Examination X E 100%

Module Category
FTP Fundamental theoretical principles

Lessons

2 lecture periods and 1 tutorial period per week

Entry level competences
Prerequisites, previous knowledge

Good knowledge of programming, algorithms and discrete mathematics.

Brief course description of module objectives and content

The aim of this module is to deepen some basic theoretical aspects of computer science. The master students will learn that ...
e formal languages and automata are essential concepts to describe different types of problems and computations;

e Computability/decidability are central to explain that for many problems seem to have an intuitive solution, although they can not be solved by

algorithms;

e Complexity deals with the amount of time required to solve a problem, and there are many very practical problems that can not be solved in

reasonable time or space.

FTP_TheoComp-2026-27.pdf / 2026-01-22

Page 1


https://www.msengineering.ch

Aims, content, methods
Learning objectives and competencies to be acquired

¢ The students understand that three different mathematical formalisms (finite state automata, regular grammars, regular expressions) are
equivalent and define the set of regular languages. Finite state automata and regular expressions are widely used and will be explained using
examples from lexical analysis, modeling of simple state-based systems, telecommunications protocols and program verification.

¢ The students realize that programming languages with regular languages can not be fully described. Context-free grammars, on the other
hand, are suitable for developing all modern programming languages. Parsing is closely linked to the context-free languages. Using parser
generators, students can explain top-down and bottom-up parsing.

¢ The students know that many problems are undecidable, i.e. that there are no algorithms to solve them, or rather that not everything is
predictable. Such intuitively difficult to understand problems occur e.g. in the case of operating systems (deadlock problem), object-oriented
programming languages (subtype decision) or program verification.

¢ The students understand that decidable problems are classified according to the resources needed to solve them (time or space) and know the
major complexity classes (P, NP, EXP, PSPACE), their differences, and interrelationships (e.g., hierarchy).

¢ The students understand the concept of nondeterminism, which plays an essential role in the study of complexity. The complexity class NP
(nondeterministic polynomial time) includes a subclass of very practical problems that are not solvable in reasonable time. Cryptology, machine
vision, various optimization problems and many other areas are affected by such problems. Students can demonstrate that such problems are
indeed unsolvable in reasonable time, and know some ways to circumvent this limitation through approximation techniques.Many problems
known as NP-complete are presented and investigated.

Module content with weighting of different components
The module is divided into three parts:

1. Languages and automata (about 36 %)
1. Alphabets, words, formal languages, grammars
2. Finite state automata, regular languages/grammars, regular expressions, nondeterminism
3. Pushdown automata, context-free languages/grammar
4. Turing machines
2. Computability/decidability (about 21 %)
1. Various computation models, Church-Turing thesis
2. Reduction of a problem to another
3. Decidable/undecidable problems
4. Computable/uncomputable functions
3. Complexity (about 43 %)
1. Types of complexity (time, space)
2. Complexity classes, polynomial time complexity, NP, polynomial time reductions, NP-completeness
3. Approximation methods

Teaching and learning methods

¢ Frontal teaching

¢ Presentation and discussion of theoretical topics

¢ Discussion of practical examples to reduce the gap between theory and practice
¢ Exercises and self-study of selected topics

Literature

Introduction to the Theory of Computation, Michael Sipser, Cengage Learning, 3rd International Edition, 2013.
Reference: http://www-math.mit.edu/~sipser/book.html (Homepage of author of the book)

Computers Ltd.: What They Really Can't Do, David Harel, Oxford University Press, 2000.

Introduction to automata theory, languages, and computation, J.E. Hopcroft and J.D. Uliman, Addison-Wesley Publishing Company, Reading, MA,
1979.

Assessment
Additional performance assessment during the semester

The module does not contain an additional performance assessment during the semester

FTP_TheoComp-2026-27.pdf / 2026-01-22 Page 2



Basic principle for exams
As arule, all standard final exams are conducted in written form. For resit exams, lecturers will communicate the exam format (written/oral)

together with the exam schedule.

Standard final exam for a module and written resit exam
Kind of exam

Written exam

Duration of exam

120 minutes

Permissible aids

Aids permitted as specified below:

Permissible electronic aids
Summary (10 pages)

Other permissible aids

No other aids permitted

Exception: In case of an electronic Moodle exam, adjustments to the permissible aids may occur. Lecturers will announce the final

permissible aids prior to the exam session.

Special case: Resit exam as oral exam
Kind of exam

Oral exam

Duration of exam

30 minutes

Permissible aids

No aids permitted

FTP_TheoComp-2026-27.pdf / 2026-01-22 Page 3


http://www.tcpdf.org

	FTP_TheoComp: Theoretical Computer Science (EN)
	General Information
	Entry level competences
	Brief course description of module objectives and content
	Aims, content, methods
	Assessment


