

Module Description, available in: EN

Advanced User Interfaces

General Information

Number of ECTS Credits

3

Module code

TSM_UseInf

Valid for academic year

2023-24

Last modification

2021-03-03

Coordinator of the module

Hans-Peter Hutter (ZHAW, hans-peter.hutter@zhaw.ch)

Explanations regarding the language definitions for each location:

- Instruction is given in the language defined below for each location/each time the module is held.
- Documentation is available in the languages defined below. Where documents are in several languages, the percentage distribution is shown (100% = all the documentation).
- The examination is available 100% in the languages shown for each location/each time it is held.

	Lausanne			Lugano	Zurich		
Instruction					X E 100%		
Documentation					X E 100%		
Examination					X E 100%		

Module Category

TSM Technical scientific module

Lessons

2 lecture periods and 1 tutorial period per week

Entry level competences

Prerequisites, previous knowledge

- Basic principles of human cognition and human-machine interaction
- Basic knowledge of graphical user interfaces.

Brief course description of module objectives and content

Graphical User Interfaces have long become standard UIs for computers, and mobile devices have not only adopted these GUIs but augmented them with multi-touch screens, speech in- and output, gesture and handwriting recognition as well as several additional sensors. This has fostered innovative ways of user interaction with the information available on these devices that were only seen in professional environments so far. In the

professional environment the trend has further developed into more and more immersive systems where the user dives more or less completely into a virtual world in order to efficiently interact with the vast amount of available information. In these scenarios, haptic interaction plays a major role. This module gives a solid introduction into the fundamental concepts and techniques of both advanced user interfaces with different input and output channels and interaction modalities as well as immersive systems with haptic interaction. Insight into the development of these advanced user interfaces and immersive systems will be given through hands-on exercises and a lab visit.

Aims, content, methods

Learning objectives and acquired competencies

Students attending this module

- · have complemented their knowledge about the user-centered UI design process and its major activities
- are familiar with a wide range of non-standard and advanced user interfaces and can discriminate and explain their characteristics, strengths
 and limitations
- possess a sound knowledge of the principles and (potential) application areas of non-standard user interfaces such as voice, gesture-based or haptic user interfaces as well as immersive systems and technologies
- know the required components and underlying technologies for these advanced user interfaces and are able to evaluate and design simple
 applications
- have extended their knowledge of user-centred design and usability to environments and applications using non-standard user interfaces and can evaluate their suitability for specific tasks or projects

Contents of module with emphasis on teaching content

- The User-Centered Design Process (15%)
 - Fundamentals of Human-Computer Interaction (Recapitulation/Convergence)
 - º UI Requirements Elicitation & Analysis: Stakeholders, Users, Business, Tasks and Context
 - · UI Design & Evaluation: Principles, Patterns, Guidelines, and Techniques
 - o Aligning with the Software Engineering process
- Recognition Based User Interfaces (50%)
 - Fundamentals of recognition-based UIs (Hidden-Markov Models, Deep Neural Networks)
 - Conversational User Interfaces
- Immersive Systems (35%)
 - Fundamentals of Virtual Reality (VR), Augmented Reality (AR) and Mixed Reality (MR) systems.
 - Technology for VR applications (human depth perception, 3D stereoscopic and volumetric displays, tracking and motion capturing technologies, locomotion interfaces)
 - Introduction to 3D computer graphics (rendering pipeline, photo-realistic and non-photo-realistic rendering, ray-tracing, particle systems, volume rendering)
 - Sonification

Teaching and learning methods

- Ex cathedra
- · Self study of literature / publications
- Practical exercises

Literature

Assessment

Certification requirements

Module uses certification requirements

Certification requirements for final examinations (conditions for attestation)

Attendance at practical exercises. Labs will be graded. The lab grades will account for about 20% of the module grade.

Basic principle for exams

As a rule, all the standard final exams for modules and also all resit exams are to be in written form

Standard final exam for a module and written resit exam

Kind of exam

written

Duration of exam

120 minutes

Permissible aids

Aids permitted as specified below:

Permissible electronic aids

No electronic aids permitted

Other permissible aids

- Slides
- Own lecture notes

Special case: Resit exam as oral exam

Kind of exam

oral

Duration of exam

30 minutes

Permissible aids

No aids permitted