
Module Description, available in: EN

Advanced Programming Paradigms

General Information
Number of ECTS Credits

3

Module code

TSM_AdvPrPa

Valid for academic year

2023-24

Last modification

2019-10-26

Coordinator of the module

Daniel Kröni (FHNW, daniel.kroeni@fhnw.ch)

Explanations regarding the language definitions for each location:

Instruction is given in the language defined below for each location/each time the module is held.
Documentation is available in the languages defined below. Where documents are in several languages, the percentage distribution is shown
(100% = all the documentation).
The examination is available 100% in the languages shown for each location/each time it is held.

Lausanne Lugano Zurich

Instruction X E 100%

Documentation X E 100%

Examination X E 100%

Module Category

TSM Technical scientific module

Lessons

2 lecture periods and 1 tutorial period per week

Entry level competences
Prerequisites, previous knowledge

Good knowledge of object-oriented programming.

Brief course description of module objectives and content
A wealth of fascinating technologies exists alongside the ubiquitous object-oriented programming and the inadequate testing methods. This module
introduces students to the most relevant of these emerging technologies from a general programming-language point of view.

Paradigms Besides object-orientation as today's mainstream programming paradigm, other quite different paradigms have been developed and
brought to maturity during the last decades: in particular functional programming, but also logic and constraint programming. None of these paradigms
is well suited to solving all the different kinds of problems but each has its own particular strengths in specific areas. Since modern software
encompasses many such areas, simultaneous application of several paradigms seems appropriate, and consequently, their seamless integration into

TSM_AdvPrPa-2023-24.pdf / 2025-08-02 Page 1

https://www.msengineering.ch

multi-paradigm languages.

Types Programming languages with a rich and consistent type system make it possible to detect certain errors at the time of compilation already.
Using the type system, invariants can be declared in one's own data types, which are then checked by the compiler. Programming in and with a strong
type system can be regarded as the first step in the direction of program verification. With even stronger type systems, it is possible to formulate
complete program specifications. The compiler does then, however, generally require support for verification.

Correctness Choosing the right programming paradigm for a given problem simplifies its solution, but does not guarantee its correctness – the most
important of all software qualities. Such a guarantee requires, in addition to the actual implementation (the "How?"), a specification (the "What?") and
proof of correctness (the "Why?"). Continuous research right from the very outset of computing has now led to a verification technology that is entering
industrial application. Since object-oriented programming is ubiquitous, its specification and verification is of particular importance.

This module will provide:
an overview of programming concepts, paradigms and languages;
a comprehensive introduction to functional programming (using Haskell or Scala);
an introduction to multi-paradigm programming, with special emphasis on types (using Scala, which is a combination of functional and object-
oriented programming);
an introduction to the theory and practice of specification and verification of imperative programs (as a basis for the verification of object-
oriented programs - example Dafny) and/or of functional programs (example Coq).

Aims, content, methods
Learning objectives and competencies to be acquired

Students will acquire an understanding of the emerging paradigms, practical skills in modern functional, multiparadigm and type-full programming, and
a basic understanding of the increasingly important field of software specification and verification.

Module content with weighting of different components

Functional programming (6 weeks)
Programming concepts, paradigms and languages.
Absence of state, referential transparency, reasoning about programs.
Eager versus lazy evaluation.
Types and type inference, higher-order functions, concrete data types and pattern matching.
Functors, applicative functors, monads.
An application: interpreter for a small imperative programming language (IML).

Multi-paradigm and strong typed programming (4 weeks)
Trait types (and Mixin composition as a variant on classical inheritance).
Generic types (co- and contravariance for type parameters).
Type classes and implicit parameters.
Type-secure DSLs (Domain Specific Languages).

Program verification (4 weeks)
Reliability via testing and verification.
Hoare logic and weakest preconditions.
Architecture of verification tools.
An application: verification condition generator.
A current verification tool: Dafny and/or Coq.

Teaching and learning methods

Ex-cathedra teaching.
Programming and verification exercises.

Literature

Graham Hutton, Programming in Haskell, Second Edition, Cambridge, 2016.
Miran Lipovaca, Learn You a Haskell for Great Good!, No Starch Press, 2011.
Martin Odersky, Lex Spoon and Bill Venners, Programming in Scala, Artima, 2008.
David Gries, The Science of Programming, Springer, 1981 (a classical text).
José Bacelar Almeida et al., Rigorous Software Development, Springer, 2011.
Federico Biancuzzi und Shane Warden, Masterminds of Programming: Conversations with the Creators of Major Programming Languages,
O'Reilly, 2009 (for recreation).

TSM_AdvPrPa-2023-24.pdf / 2025-08-02 Page 2

Assessment
Certification requirements

Module does not use certification requirements

Basic principle for exams

As a rule, all standard final exams are conducted in written form. For resit exams, lecturers will communicate the exam format (written/oral)

together with the exam schedule.

Standard final exam for a module and written resit exam

Kind of exam

Written exam

Duration of exam

120 minutes

Permissible aids

Aids permitted as specified below:

Permissible electronic aids

No electronic aids permitted

Other permissible aids

a summary on at most 4 pages DIN A4 (= 2 sheets DIN A4, written by hand or electronically and printed out)

Special case: Resit exam as oral exam

Kind of exam

Oral exam

Duration of exam

30 minutes

Permissible aids

No aids permitted

Powered by TCPDF (www.tcpdf.org)

TSM_AdvPrPa-2023-24.pdf / 2025-08-02 Page 3

http://www.tcpdf.org

	TSM_AdvPrPa: Advanced Programming Paradigms (EN)
	General Information
	Entry level competences
	Brief course description of module objectives and content
	Aims, content, methods
	Assessment

