

Module Description, available in: EN

Advanced robotics

General Information

Number of ECTS Credits

2

Module code

TSM_AdvRobot

Valid for academic year

2022-23

Last modification

2022-01-05

Coordinator of the module

Gabriel Gruener (BFH, gabriel.gruener@bfh.ch)

Explanations regarding the language definitions for each location:

- Instruction is given in the language defined below for each location/each time the module is held.
- Documentation is available in the languages defined below. Where documents are in several languages, the percentage distribution is shown (100% = all the documentation).
- The examination is available 100% in the languages shown for each location/each time it is held.

	Lausanne			Lugano	Zurich		
Instruction					X E 100%		
Documentation					X E 100%		
Examination					X E 100%		

Module Category

TSM Technical scientific module

Lessons

2 lecture periods and 1 tutorial period per week

Entry level competences

Prerequisites, previous knowledge

- Linear algebra and differential equations
- Feedback control systems
- Actuation and sensory systems
- Basic programming skills
- · Basic robotics knowhow (recommended)

Brief course description of module objectives and content

In this module, basic and advanced robotics knowhow is developed necessary for leading-edge, innovative industrial and service applications with robot manipulators.

Aims, content, methods

Learning objectives and acquired competencies

At the end of this course, the student will have earned the knowledge necessary to build a complete robot system as well as acquired the skills to develop industrial and service applications based on commercial robots beyond their standard interfaces.

Contents of module with emphasis on teaching content

Robot Kinematics

- Homogeneous transformation matrices and quaternions
- · Forward, inverse and instantaneous kinematics of serial and parallel robots
- Kinematic redundancies and subspaces
- Trajectory generation

Robot Dynamics

- Motion state: speed, acceleration and jerk
- Dynamic models of multibody systems
- o Modeling friction, gear backlash, efficiency and stiffness
- Robot dynamic equations for simulation and control

Robot Control

- · Linear and nonlinear control
- Trajectory, force and hybrid control
- o Adaptive, model-based, vision-based control
- Haptic control

Robot Design

- · Task requirements and kinematic configuration
- o Joint types, actuators, sensors, communication busses and architectures
- · Control systems and real-time restrictions

Applications

- · Industrial and service use cases
- Collaborative and interactive robots
- · Research topics
- · Safety and ethics in robotics

Teaching and learning methods

- Ex-cathedra teaching
- Case studies
- Exercises
- The theory learned in class is applied in real robotic applications

Literature

- B. Siciliano, O. Khatib eds., "Springer Handbook of Robotics", Springer-Verlag, Berlin, 2016.
- J. J. Craig, "Introduction to Robotics: Mechanics and Control", 3rd edition, Pearson Prentice Hall, USA, 2005.
- P. Corke, "Robotics, Vision and Control", Springer-Verlag, Berlin, 2017.

Assessment

Certification requirements

Module uses certification requirements

Certification requirements for final examinations (conditions for attestation)

Submission of the given exercises

Basic principle for exams

As a rule, all the standard final exams for modules and also all resit exams are to be in written form

Standard final exam for a module and written resit exam

Kind of exam

written

Duration of exam

120 minutes

Permissible aids

Aids permitted as specified below:

Permissible electronic aids

All electronic aids permitted

Other permissible aids

Open book

Special case: Resit exam as oral exam

Kind of exam

oral

Duration of exam

30 minutes

Permissible aids

Aids permitted as specified below:

Permissible electronic aids

All electronic aids permitted

Other permissible aids

Open book