

Module Description, available in: EN

Heat Transfer

General Information

Number of ECTS Credits

3		
Module code		
TSM_Heat		
Valid for academic year		
2020-21		
Last modification		
2019-09-07		
Coordinator of the module		

Heinrich Manz (HSLU, heinrich.manz@hslu.ch)

Explanations regarding the language definitions for each location:

- Instruction is given in the language defined below for each location/each time the module is held.
- Documentation is available in the languages defined below. Where documents are in several languages, the percentage distribution is shown (100% = all the documentation).
- The examination is available 100% in the languages shown for each location/each time it is held.

	Lausanne		Lugano	Zurich			
Instruction					X E 100%		
Documentation					X E 100%		
Examination					X E 100%		

Module Category

TSM Technical scientific module

Lessons

2 lecture periods and 1 tutorial period per week

Entry level competences

Prerequisites, previous knowledge

Basic knowledge of thermodynamics and fluid dynamics.

Brief course description of module objectives and content

The basic theories of heat transfer by conduction, convection and thermal radiation are presented. However, this study-unit focuses on solving practical heat transfer problems in different fields of engineering such as architectural and HVAC engineering, mechanical and process engineering, electrical as well as environmental engineering.

Aims, content, methods

Learning objectives and acquired competencies

Students shall learn how to solve engineering problems in the field of heat transfer.

Contents of module with emphasis on teaching content

- Overview of Heat Transfer Modes
- Introduction to Conduction
- One-Dimensional, Steady-State Conduction
- Two-Dimensional, Steady-State Conduction
- Transient Conduction
- Introduction to Convection
- External Flow
- Internal Flow
- Free Convection
- · Introduction to Radiation
- Radiation: Processes and Properties
- Radiation: Exchange Between Surfaces

Teaching and learning methods

Presentation of theory and practical examples of heat transfer problems, problem solving

Literature

F. Incropera, D. DeWitt, T. L. Bergman, A. S. Lavine. Incropera's Principles of Heat and Mass Transfer: Global Edition. Wiley, 2017-11-01.

Assessment

Certification requirements

Module does not use certification requirements

Basic principle for exams

As a rule, all the standard final exams for modules and also all resit exams are to be in written form

Standard final exam for a module and written resit exam

Kind of exam

written

Duration of exam

120 minutes

Permissible aids

Aids permitted as specified below:

Permissible electronic aids

Pocket calculator

Other permissible aids

- Lecture notes
- · Personal summary
- Course textbook (F. Incropera, D. DeWitt, T. L. Bergman, A. S. Lavine. Incropera's Principles of Heat and Mass Transfer: Global Edition. Wiley, 2017-11-01)

Special case: Resit exam as oral exam

Kind of exam oral

Duration of exam

30 minutes

Permissible aids

No aids permitted