

Module Description

Machine Learning in Computer Vision

General informatio	11							
Number of ECTS C	redits							
Module code TSM_CompVis								
Responsible of mo								
 Document 	n is given in the	language def	ined below for uages defined	each location below. Where				9
	e distribution is ination is availa	,		,	ch location/eac	h time it is hel	d.	
	e distribution is	,		,	ch location/eac	h time it is hel	d.	
	e distribution is ination is	able 100% in t		,			d.	□ D 100%
The exam	e distribution is ination is availa Berne	able 100% in t		shown for eac	Lugano	Zurich	d. □ E %	□ D 100% □ D %
The exam Instruction	e distribution is ination is available. Berne	Lausanne	the languages	shown for eac	Lugano □ E 100%	Zurich ⊠ E 100%	□ E %	
The exam Instruction Documentation	Berne □ E 100% □ E 100% □ E 100% □ E 100% al theoretical pecientific specie	Lausanne □ E 100% □ E 100% □ E 100% □ E 100%	□ E %	shown for each	Lugano □ E 100% □ E 100%	Zurich ⊠ E 100% ⊠ E 100%	□ E %	□ D %

Entry-level competencies

Prerequisites, previous knowledge

Prerequisites:

- Basic knowledge of machine learning (e.g. Andrew Ng's ML course on Coursera)
- Good command of an imperative programming language, basic knowledge of Python (the module will use Python 3).
- http://www.scipy-lectures.org/index.html Sections 1.1, 1.2, 1.3, 3.6.1, 3.6.2
- Basic knowledge of probability, statistics, linear algebra (vectors, matrices)
- Students are expected to take their laptops for the Lab activities

Brief course description of module objectives and content

Analyzing images is a very complex task that has many important real-world applications. This module presents powerful techniques to extract information from images and 3D data, based on machine learning and deep learning methods. These methods are mostly used as "black boxes" and their inner workings are not discussed in much detail. The module provides an overview of many image analysis applications such as document analysis, medical imaging and autonomous driving; examples of advanced uses of deep learning on images (generative networks for image synthesis, adversarial networks, neural style transfer) are also discussed.

Aims, content, methods

Learning objectives and acquired competencies

- Students know how images and 3D data are represented and manipulated by software
- Students know the most important problems related to image analysis: e.g. image classification, segmentation and object detection and tracking
- Students can apply machine learning and deep learning techniques to solve image-related problems, and deal with practical issues arising in the field (dataset engineering, data augmentation, data normalization)
- Students have seen different examples of image analysis problems and common solution techniques, and are able to
 acquire additional expert knowledge from the scientific literature and online resources

Contents of module with emphasis on teaching content

- Introduction
- Basic image processing methods applied to document processing: binarization; segmentation of text into lines, words and characters; connected component analysis.
- Image classification
 - o applications to OCR: handcrafted features; convolutional neural networks.
 - Image classification with small datasets: data augmentation techniques; one-shot learning; transfer learning and pre-trained models.
- Segmentation
 - o applications to medical images (2D, 3D)
 - fully convolutional networks for semantic segmentation.
- Object detection
 - o face detection with cascading classifiers
 - pedestrian detection for autonomous driving
 - o object tracking in videos.
- Generative models and Image Synthesis
 - Applications to Image Inpainting;
 - Generative Adversarial Networks;
 - o Neural style transfer.

Teaching and learning methods

Classroom teaching; programming exercises using python and frameworks in python

Literature

- Computer Vision: Algorithms and Applications, Richard Szeliski, 2010
- Deep Learning with Python, Francois Chollet, early 2018 Sections 5, 8.3, 8.5

Assessment

Certification requirements for final examinations (conditions for attestation)

75% of homework passed

Basic principle for exams:

All the standard final exams for modules are written exams.

The repetition exams can be either written or oral.

Standard final exam for a module and written repetition exam

Kind of Exam	written
Duration of exam	120 minutes
Permissible aids	□ no aids
	□ permissible aids:
	☐ Electronical aids:
	☑ Hardcopy form: 10 A4 pages (2 sided)
	o

Special case: Repetition exam as an oral exam

If an oral exam is set (only possible for \leq 4 students), the following applies:

Kind of Exam oral

Duration of exam 30 minutes
Permissible aids no aids