

Module Description

Algorithms
General Information

Number of ECTS Credits
3

Module code
TSM_Alg

Responsible of module
Éric Taillard, HES-SO

Language
Explanations regarding the language definitions for each location:

 Instruction is given in the language defined below for each location/each time the module is held.
 Documentation is available in the languages defined below. Where documents are in several languages, the

percentage distribution is shown (100% = all the documentation).
 The examination is available 100% in the languages shown for each location/each time it is held.

 Berne Lausanne Lugano Zurich

Instruction E 100% E 100% F 100% E 100% E 100% D 100%

Documentation E 100% E 100% E 50% F 50% E 100% E 100% E % D %

Examination E 100% E 100% E 100% F 100% E 100% E 100% E 100% D 100%

Module category
 FTP Fundamental theoretical principles

 TSM Technical/scientific specialization module

 CM Context module

Lessons
2 lecture periods and 1 tutorial period per week

Entry-level competencies
Prerequisites, previous knowledge
The student has working knowledge of:

 Geometry, linear algebra, algorithms (sorting, searching, hashing) and data structures (linear structures, trees)
 Basics of graph data structures and algorithms
 Algorithmic complexity, logic, probability theory.

These topics are generally contained in books introducing algorithms. For instance, chapters 1-12, 15-17, 22-26, 28-29, 34-35 of
(Cormen 09) covers very well the prerequisites

Brief course description of module objectives and content
This module introduces students with different categories of advanced algorithms and typical application areas.
In the first part of the module, the students will have a sound understanding of data structures and algorithms for efficiently
handling either very large, complex or dynamic data sets or combinations thereof. They will be able to evaluate suitable
algorithms and to apply them to typical tasks such as efficiently indexing, searching, retrieving, inserting or updating data such as
large volumes of hypertext or spatial data.
The students will be familiar with dynamic algorithms used, for example, in artificial intelligence or molecular sciences.
The second part of the module will present basic techniques for designing algorithms for hard combinatorial optimization
problems. The combination of these basic components —problem modeling, problem decomposition, solution building, solution
improvement, learning— lead to classical metaheuristics like genetic algorithms, ant colonies or tabu search. The students will be
able to design new algorithms for hard combinatorial optimization problems and to apply them.

Aims, content, methods
Learning objectives and acquired competencies
This module gives the student an overview of frequently used algorithms classes. Based on this strong foundation, students can
design and implement the most suitable and efficient algorithms for use in their own applications. The student:

 is familiar with different categories of advanced algorithms and with typical application areas;
 has a sound understanding of data structures and algorithms for efficiently handling either very large, complex or

dynamic data sets or combinations thereof;
 is able to evaluate suitable algorithms and to apply them to typical tasks such as efficiently indexing, searching,

retrieving, inserting or updating data, including data types such as large volumes of hypertext or spatial data;
 is familiar with dynamic algorithms used in robotics, artificial intelligence or molecular sciences.

Contents of module with emphasis on teaching content

Computational Geometry and Multi-dimensional Data Structures. Weight 50%
 geometric algorithms
 computational geometry algorithms
 multidimensional data structures and algorithms

Metaheuristic-based algorithms. Weight 50%
 Constructive methods
 Local searches
 Decomposition techniques
 Learning techniques
 Classical metaheuristics: GRASP, ant colonies, tabu search, simulated annealing, noising methods, genetic algorithms

Part I Computational geometry
Reminder:

 Asymptotical notation
 Complexity of recursive algorithms
 Basic data structures (table, list, stack, queue, binary tree, heap, hashing table)
 Basic algorithms (sorting, 1D indexing and searching)
 Graphs and networks, planar graphs, doubly-connected edge list (DCEL)
 Linear algebra (point, vector, dot product, cross product)

Introduction to Computational Geometry
 Introductory problem : visibility map, polygons and boolean operations, line intersection, numerical problems
 Basic objects and primitives (points, segments, polygons, rays, lines)
 Existing CG software and libraries.

Construction paradigms
 Incremental construction (line arrangements, line segment intersection, overlay problem)
 Divide and conquer (convex hull for points in the plane)
 Plane sweep technique (closest pair problem, intersections detection in segments sets)

Range Searching
 Kd and Range trees for orthogonal range searching (example of "multi-level structure")
 Quadtrees

Windowing
 Interval tree for horizontal line segments
 Priority search tree

Voronoï Diagram, Delaunay triangulation
 Computation of Voronoï Diagram
 Terrain and randomized algorithm for Delaunay triangulation

Part II Metaheuristics
Introduction and reminder:

 Basic problems and algorithms for graphs and networks
 Optimal trees, paths and flows, linear assignment
 Combinatorial optimization, complexity theory, problem modelling and utility function
 Hard problems: Travelling salesman, Steiner tree, Quadratic assignment, Graph colouring, Scheduling

Constructive methods
 Random building
 Greedy construction
 Beam search, Pilot method

Local searches
 Neighbourhood structure, moves, 2-opt and 3-opt for the travelling salesman problem
 Neighbourhood limitation
 Neighbourhood extension, Lin-Kernighan neighbourhood for the travelling salesman problem, fan and filter

Randomized methods
 Threshold accepting, great deluge and demon algorithms
 Simulated annealing
 Noising methods
 GRASP
 Variable neighbourhood search

Decomposition methods
 Large neighbourhood search, POPMUSIC

Learning methods for solution building
 Artificial ant systems
 Vocabulary building

Learning methods for iterative local search
 Tabu search

Methods with a population of solutions
 Genetic algorithms
 Scatter Search
 GRASP with path relinking

Teaching and learning methods
 Ex-cathedra teaching
 Presentation and discussion of case studies
 Theory and programming exercises
Literature

M. de Berg, G. Cheong, M. van Kreveld, M. Overmars. Computational Geometry : Algorithms and Applications, Springer, Third
Edition 2008.
T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein. Introduction to Algorithms, third edition, MIT Press, 2009.
P. Siarry (ed.), Metaheuristics, ISBN 978-3-319-45403-0, Springer, 2016.
H. H. Hoos, Th. Stützle Stochastic Local Search: Foundations and Applications, Morgan Kaufmann / Elsevier, 2004.
É. Taillard Introductions aux méta-heuristiques, WWW, 2015

Assessment
Certification requirements for final examinations (conditions for attestation)

Basic principle for exams:
All the standard final exams for modules are written exams.
The repetition exams can be either written or oral.

Standard final exam for a module and written repetition exam
Kind of Exam written

Duration of exam 120 minutes

Permissible aids No aids

 Permissible aids:

 Electronical aids: None

 Hardcopy form: Books, copy of slides (solutions to exercises excluded)

Special case: Repetition exam as an oral exam
If an oral exam is set (only possible for ≤ 4 students), the following applies:

Kind of Exam oral

Duration of exam 30 minutes

Permissible aids No aids

