

Module Description

Vibrations and Control

General Information

General Information				
Number of ECTS Credits				
3				
Abbreviation				
TSM_VibrContr				
Version				
2016.03.17				
Responsible of module				
Giacomo Bianchi, SUPSI				
Language				
	Lausanne	Bern	Zürich	Lugano/Manno
Instruction	DE DF	DD DE DF	DD DE	× E
Documentation				X E
Examination				× E
Module category				
□ Fundamental theoretical	principles			
I Technical/scientific specialization module				
Context module				
Lessons				
☑ 2 lecture periods and 1 tutorial period per week				
□ 2 lecture periods per week				
Brief course description of module objectives and content				
Examination of structural vibrations and their representation and modeling. Tools and methods for vibration control in traditional				
and modern industrial environments.				
Aims contant mathads				
Aims, content, methods Learning objectives and acquired competencies				
Consolidate theoretical knowledge on structural vibration and control systems.				
 Numerical modeling (by lumped masses) and experimental characterization of mechanical structures. 				
Dynamic analysis of high performance machine tools.				
Contents of module with emphasis on teaching content Introduction				
Scope and examples.				
Structural Vibrations				
Static and dynamic behavior.				
 Steady state, frequency response, resonance. Time response, one degree of freedom systems, numerical modeling and simulation. 				
 Experimental identification (impact test with instrumented hammer & accelerometers). 				
Analytical FRFs, poles and zero.				
N degrees of freedom. Mode shapes.				
Tuned passive dampers. Distributed compliance modeling (EEM, Examples)				
Distributed compliance modeling (FEM. Examples). Control				
Feed-forward and feed	dback control			
The PID regulator. Stability us performance issues. Tuning criteria. Post locus				
 Stobulity via portormor 	no incluing luning oritoria Dog			

- Stability vs. performance issues. Tuning criteria. Root locus.
- Regulator architecture in classical industrial drives.
- Modern control approaches (outline only).

Teaching and learning methods

Frontal theoretical lessons with interaction. Self developed numerical exercises. Numerical simulation in MATLAB/Simulink. Experimental measurement of a dynamic compliance by impact testing

Prerequisites, previous knowledge, entrance competencies

- Linear algebra (matrices, eigenvalues, eigenvectors,...), linear differential equations.
 Dynamic equilibrium of a mechanical systems (mass, springs, dampers, natural frequencies,...)
- Fourier transform.
- Entry-level experience with MATLAB/Simulink

Literature

Assessment

Certification requirements for final examinations (conditions for attestation)

Positive evaluation of numerical exercises and simulations is prerequisite for entering the final exam, will not contribute to final mark.

Written module examination

Duration of exam:

Permissible aids:

120 minutes none