

Description du module

Conception de hardware et firmware embarqués

Generalites			
Nombres de crédits ECTS			
3			
Sigle du module			
TSM_EmbHardw			
Version			
04 mars 2013			
Responsable du Module			
Hans Dermot Doran, ZHAW			
Langue			
	Lausanne	Berne	Zurich
Instruction	X E X F	□D □E □F	□D ⊠E
Documentation	⊠E□F	□D □E □F	□D ⊠E
Examen	⊠E ⊠F	□D □E □F	□D ⊠E
Catégorie du module			
□ Bases théoriques élargies			
☑ Approfondissement technique et scientifique			
☐ Module de savoirs contextuels			
Périodes			
☑ 2 périodes d'enseignement frontal et 1 période d'exercice par semaine			
☐ 2 périodes d'enseignement frontal par semaine			
Brève description des objectifs et du contenu du module			

Le présent module donne aux étudiants un aperçu sur les concepts avancés de technologies modernes d'ingénierie embarquée. Le module se subdivise en deux parties. La première partie est consacrée à la pratique/théorie et vise à familiariser l'étudiant à mettre en oeuvre des systèmes de conception de puces. La deuxième partie aborde la conception conjointe formelle matérielle et logicielle, y compris la conception et la mise en œuvre d'architectures embarquées et la vérification des systèmes créés.

Objectifs, contenu et méthodes

Objectifs d'apprentissage et compétences visées

L'étudiant connaîtra quelques-unes des forces intervenant dans la direction des architectures embarquées modernes.

L'étudiant comprendra et sera capable d'appliquer des méthodes de co-design matériel et logiciel, ainsi que des stratégies de test et de vérification des systèmes embarqués (vérification conjointe HW/SW).

L'étudiant sera capable de concevoir et de mandater des designs SoC complet sur un FPGA.

L'étudiant sera capable de concevoir des SoC au moyen des technologies suivantes- processeurs softcore (multiples), coprocesseurs (instructions programmables, coprocesseurs fortement couplés, processeurs de signal) et accélération matérielle.

L'étudiant comprendra et appliquera les techniques d'optimisation logicielle avancées.

L'étudiant devra réaliser des exercices pertinents sur une carte de développement adéquate.

Contenu du module avec pondération des contenus d'enseignement

- Introduction
- Technologie FPGA
- conception SoC, processeurs soft-core, modules auto-conçus
- o systèmes de bus, DMA, hiérarchie mémoire (caches, SPM)
- Architectures des automates
 - Processeurs softcore, instructions programmables, coprocesseurs, architectures de processeurs
 - Firm/software embarqués et techniques d'optimisation
 - o Interfaçage périphérique, accélération matérielle
- Test et vérification
 - o Vérification conjointe matérielle et logicielle et stratégies de contrôle

Examen

o Exercises et laboratoire utilisant une carte FPGA

Méthodes d'enseignement et d'apprentissage

Cours magistraux

Travaux dirigés

Etude autonome

Connaissances et compétences prérequises

Les étudiants jouissent de connaissances professionnelles des systèmes de programmation en C.

Les étudiants jouissent de connaissances professionnelles des bases de la conception matérielle y compris le codage VHDL **Bibliographie**

Pas de bibliographie obligatoire

Mode d'évaluation

Conditions d'admission aux examens de fin de module (tests exigés)

Test volontaire partie 1: Implémentation SoC (20%)

Test volontaire partie 2: Processus et méthodologie formels (20%)

Examen écrit de fin de module

Durée de l'examen: 120 minutes

Moyens autorisés: Notes prises en cours et référence VHDL