

Module description

Computational Fluid Dynamics (CFD)

General information				
Number of ECTS Credits				
3				
Abbreviation				
TSM_CFD				
Version				
19.03.2014				
Responsible of module				
Prof. Dr. Ernesto Casartelli				
Language				
	Lausanne	Bern	Zürich	
Instruction	XE XF	DD DE DF	XD XE	
Documentation	XE 🗆 F	DD DE DF	D XE	
Examination	XE XF	DD DE DF	XD XE	
Module category				
Fundamental theoretical principles				
X Technical/scientific specialization module				
Context module				
Lessons				
X 2 lecture periods and 1 tutorial period per week				
□ 2 lecture periods per week				
Brief course description of module objectives and content				
This module provides students with a comprehensive introduction to CFD by imparting knowledge of state-of-the-art techniques				
in computational fluid dynamics, with the emphasis on fluid physics and verification/assessment.				

Aims, content and methods

Learning objectives and acquired competencies

Students who have completed this module are able to:

- employ the potential of computational fluid dynamics for product development and be aware of its limits
- verify simulation results and critically assess simulation models
- systematically approach simulation tasks

understand the properties of the numerics behind the code

Contents of module with emphasis on teaching content

- Motivation: objectives of computational fluid dynamics, meaning and economic benefit of numerical simulation, integration of numerical simulation in product development, possibilities and limits
- Introduction to physical and technical systems and their describing equations: fluid mechanics, thermodynamics, others
- Idealization and modeling: classification of the simulation tasks (steady-state, transition, 2D, 3D, symmetry, etc.), modeling based on geometry, flow properties, boundary conditions
- Verification and assessment: solving equations correctly, solving the correct equations, interpretation of simulation results,

error possibilities and sources			
Week	Subject areas		
1	Introduction to CFD: an overview		
2	Conservation laws and behavior of PDE		
3	Introduction to OpenFOAM		
4	The finite volume method for diffusion problems		
5	The finite volume method for the interpretation of convection-diffusion problems, verification and assessment		
6	The finite volume method for the interpretation of convection-diffusion problems, verification and assessment		
7	Algorithms for linking pressure and flow velocity for steady-state flows		
8	Algorithms for linking pressure and flow velocity for steady-state flows		
9	Numerics for solving discretized equations		
10	Physics of turbulence and modeling		
11	Physics of turbulence and modeling		
12	Physics of turbulence and modeling		

	13	Non-steady-state flows
[14	Non-steady-state flows

Teaching and learning methods

Ex cathedra, practical exercises and case studies

Prerequisites, previous knowledge, entrance competencies

- Knowledge of fluid mechanics: laminar, turbulent, compressible, incompressible, steady-state and non-steady-state flow
- Knowledge of thermodynamics: conservation of mass and energy, equation of state (ideal gas, incompressible fluid), heat capacity, thermal conductivity
- Basic knowledge of numerical methods
- Basic knowledge of CFD simulation methods and tools is desirable

Literature

- Lehrbuch (Skript) H.K. Versteeg, W.Malalasekera, An Introduction to Computational Fluid Dynamics, Pearson Prentice Hall, 2007, Second Edition
- J. H. Ferziger, M. Peric, Computational Methods for Fluid Dynamics, Springer, 2002, Third Edition

120 minutes

Assessment

Certification requirements for final examinations (conditions for attestation)

None

Written module examination

- Duration of exam:
- Permissible aids:

Lecture notes and electronic devices by agreement