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Module category

Fundamental theoretical principles

[0 Technical/scientific specialization module
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Lessons

2 lecture periods and 1 tutorial period per week

O 2 lecture periods per week

Brief course description of module objectives and content

The course starts with an overview of classical engineering physics with special emphasis of balance and constitutive equations
(i.e., continuity equations and material laws). The basic concepts of vector analysis are applied to electrodynamics, various
transport phenomena, mechanical elasticity and piezo-electric effects. The concept of tensors enables the description of
important anisotropic effects of solid state physics. These effects are present in crystals as well as in layered material systems,
which are more and more used in modern technology. The given overview facilitates the student’s understanding and
application of numerical simulation methods (e.g., FEA, multiphysics).

Aims, content, methods
Learning objectives and acquired competencies

« Students are familiar with the most important basic laws of engineering physics for isotropic materials in general view form,
recognize analogies between different application areas and exploit these for analyzing systems

o Students know about the generalization of the laws for anisotropic materials and can interpret these, especially with regard to
application in numerical simulation

o Students master vector analysis and the algebra of tensors together with the standard notation conventions

o Students understand the basics of electrodynamics and transport phenomena for anisotropic systems

o Students understand mechanical elasticity with 3D strain and stress states and are familiar with the material laws in general
form for isotropic and anisotropic bodies

« Students understand the piezo-electric effect and its applications in engineering (sensors and actuators)

Contents of module with emphasis on teaching content
« Recapitulation of isotropic material laws (Ohm, Hook, electric polarization, heat conduction)
e Introduction to vector and tensor calculation: scalar, vectorial and tensorial parameters, tensor algebra,
« Transformation behavior of vectors and tensors
e Hands-on calculation of vector analysis and tensoralgebra: electrodynamics and anisotropic transport phenomena
o Elasticity theory with emphasis on 3D stress states
o Piezo-effect: physical fundamentals
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Week Subject

MW1 Introduction, motivation, repetition of fundamental physical laws from engineering physics
MW2 Scalars, vectors, divergence, gradient, curl

MW3 Integral theorems and applications of vector analysis in physics

MwW4 Maxwell I: Electro- and magnetostatics

MW5 Maxwell II: Electrodynamics

MW6 Maxwell Il Electrodynamics

MW7 Fundamental mathematical properties of tensors, transformations of tensors
MW8 Transport phenomena, Ohm'’s law, heat conduction and diffusion

MW9 Elasticity: stress and distortion tensor, thermal expansion

MW10 Elasticity: Hooke's law, tensors of the fourth rank, engineering diagram

Mw11 Elasticity: 3D stress and distortion states

MW12 Piezoelectricity: fundamentals

MW13 Piezoelectricity, engineering applications: pressure transducers, piezo actuators
MW14 Engineering applications with 3D stress and distortion states

Teaching and learning methods
o Frontal teaching (approx. 60 %)
e Presentation and discussion of case studies and problems, individual problem solving (approx. 40 %)

Prerequisites, previous knowledge, entrance competencies

o Physics, analysis, linear algebra at Bachelor’s level ,

o The Mathematical prerequisites are covered by the chapter 7 -9 of [4]. The Summaries of these chapters are in the appendix
of this document.

Literature

[1] R.E. Newham, Properties of Materials, Oxford, 2005

[2] J.F. Nye, Physical Properties of Crystals, Oxford Science Publication, 2004
[3] J.Tichy, Fundamentals of Piezoelectric Sensorics, Springer 2010

[4] E. Kreszig, Advanced Engineering Mathematics, 10" edition, Wiley, 2011

Assessment
Certification requirements for final examinations (conditions for attestation)

Written module examination
Duration of exam : 120 minutes
Permissible aids: Personal formula collection, pocket calculator, courseware
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Appendix
SUMMARY OF CHAPTER 7

Linear Algebra: Matrices, Vectors, Determinants.

Linear Systems

An m X n matrix A = [gj] is a rectangular array of numbers or functions
(“entries.” “elements”) arranged in m horizontal rows and n vertical columns. If
m = n, the matrix is called square. A 1 X n matrix is called a row vector and an
m X 1 matrix a column vector (Sec. 7.1).

The sum A + B of matrices of the same size (i.e.. both m X n) is obtained by
adding corresponding entries. The product of A by a scalar ¢ is obtained by
multiplying each a;i. by ¢ (Sec. 7.1).

The product C = AB of an m X n matrix A by an r X p matrix B = [bj;] is
defined only when r = n, and is the m X p matrix C = [cjk] with entries

(row j of A times

1 S o= anbir + a: + s+ oa
(1) Gk = ajby + ajoboy @jnbni soliisiin Kef B,
This multiplication is motivated by the composition of linear transformations
(Secs. 7.2, 7.9). It is associative, but is not commutative: if AB is defined, BA may
not be defined, but even if BA is defined, AB # BA in general. Also AB = 0 may
not imply A = 0 or B = 0 or BA = 0 (Secs. 7.2, 7.8). lllustrations:
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A S

[(r 2] =11l [1 2]= .
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The transpose A" of a matrix A = [aji] is AT = [ay;]; rows become columns

and conversely (Sec. 7.2). Here, A need not be square. If it is and A = AT, then A
is called symmetric; if A = —A', it is called skew-symmetric. For a product,
(AB)" = BTAT (Sec. 7.2).

A main application of matrices concerns linear systems of equations

(2) Ax=b (Sec. 7.3)

(m equations in n unknowns xy, ***, x,,; A and b given). The most important method
of solution is the Gauss elimination (Sec. 7.3), which reduces the system to
“triangular” form by elementary row operations, which leave the set of solutions
unchanged. (Numeric aspects and variants, such as Doolittle’s and Cholesky’s
methods, are discussed in Secs. 20.1 and 20.2.)
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SUMMARY OF CHAPTER 8

Linear Algebra: Matrix Eigenvalue Problems

The practical importance of matrix eigenvalue problems can hardly be overrated.
The problems are defined by the vector equation

(1) Ax = Ax.

A is a given square matrix. All matrices in this chapter are square. A is a scalar. To
solve the problem (1) means to determine values of A, called eigenvalues (or
characteristic values) of A, such that (1) has a nontrivial solution x (that is, x # (),
called an eigenvector of A corresponding to that A. An n X n matrix has at least
one and at most n numerically different eigenvalues. These are the solutions of the
characteristic equation (Sec. 8.1)

ap;; — A ais din
agy agg — A - doy,
2) D) = det(A — Al) = =0.
n An2 gy — A

D(A) is called the characteristic determinant of A. By expanding it we get the
characteristic polynomial of A, which is of degree n in A. Some typical applications
are shown in Sec. 8.2

Section 8.3 is devoted to eigenvalue problems for symmetric (AT = A), skew-
symmetric (AT = —A), and orthogonal matrices (AT - A_l). Section 8.4
concerns the diagonalization of matrices and the transformation of quadratic forms
to principal axes and its relation to eigenvalues.

Section 8.5 extends Sec. 8.3 to the complex analogs of those real matrices, called
Hermitian (AT = A), skew-Hermitian (AT = —A), and unitary matrices
(KT = A“l). All the eigenvalues of a Hermitian matrix (and a symmetric one) are
real. For a skew-Hermitian (and a skew-symmetric) matrix they are pure imaginary
or zero. For a unitary (and an orthogonal) matrix they have absolute value 1.
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The vector product is suggested, for instance, by moments of forces or by rotations.
CAUTION! This multiplication is anticommutative, a X b = —b X a, and is not
associative.

An (oblique) box with edges a, b, ¢ has volume equal to the absolute value of
the scalar triple product

(7) (a b ¢c)=a*(bXc)=(aXDbh)eec.
Sections 9.4-9.9 extend differential calculus to vector functions
v(r) = [v1(1), vao(t), L3(1)] = V(DI + va()j + va(Hk

and to vector functions of more than one variable (see below). The derivative of
v(r) is

dv v(t + A1) — v(1)

I . ! ’ ’ I ! (4
=—= |im = [vq, Vo,U3] = U1 + Us] + U3k
1 Py . [vy, V2, V3] 1 2] 3

8) v

Differentiation rules are as in calculus. They imply (Sec. 9.4)
(uev) =u'ev+uev, uXv) =u Xv+uxv.

Curves C in space represented by the position vector r(f) have r’(f) as a tangent
vector (the velocity in mechanics when 7 is time), r'(s) (s arc length, Sec. 9.5) as
the unit tangent vector, and [r”(s)| = k as the curvature (the acceleration in
mechanics).

Vector functions v (x, y, 7) = [v1(x, y, 2), a(x, y, 2), U3 (x, ¥, )] represent vector
fields in space. Partial derivatives with respect to the Cartesian coordinates x, y, z
are obtained componentwise, for instance,

T G = e 1K (Sec. 9.6).
Jdx dx ox dx ox ox

Iv dvy Jdug dUg dvy . dug  dug
Jdx

The gradient of a scalar function f'is

af of of
df=Vf=|—,—,— Sec. 9.7).
©) grad f = Vf [ T EJ (Sec. 9.7)
The directional derivative of fin the direction of a vector a is
a 1
(10) Daf=—=—a°*Vf (Sec. 9.7).
ds |al

The divergence of a vector function v is

aUl 802 803
(11) divv=Vey=—4+—+—, (Sec. 9.8).
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SUMMARY OF CHAPTER 9

Vector Differential Calculus. Grad, Div, Curl

All vectors of the form a = [ay, as. az] = aji + azj + ask constitute the real
vector space R® with componentwise vector addition

(1) lay, ag, az] + [by, by, b3] = [ay + by, ag + bo, a3 + b3]
and componentwise scalar multiplication (¢ a scalar, a real number)
(2) clay, as. az] = [cay, cas, cas] (Sec. 9.1).

For instance, the resultant of forces a and b is the sum a + b.
The inner product or dot product of two vectors is defined by

(3) a*b = |al|b] cos y = ayby + ashy + azbs (Sec. 9.2)

where 7 is the angle between a and b. This gives for the norm or length |al of a
o) la| = Vasa= Vai+d5 + af

as well as a formula for y. If a « b = 0, we call a and b orthogonal. The dot product
is suggested by the work W = p + d done by a force p in a displacement d.
The vector product or cross product v = a X b is a vector of length

(5) la x b| = |a||b] siny (Sec. 9.3)

and perpendicular to both a and b such that a, b, v form a right-handed triple. In
terms of components with respect to right-handed coordinates,

i j k
(6) axb=|ag as as (Sec. 9.3).
by by b3




